
International Journal of Computer Trends and Technology Volume 67 Issue 2, 7-11, February 2019

ISSN: 2231-2803 / https://doi.org/10.14445/22312803/IJCTT-V67I2P102 © 2019 Seventh Sense Research Group®

Original Article

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Phoenix - The Arabic Object-Oriented

Programming Language

Youssef Bassil

LACSC – Lebanese Association for Computational Sciences

Registered under No. 957, 2011, Beirut, Lebanon

Abstract - A computer program is a set of electronic

instructions executed from within the computer’s

memory by the computer's central processing unit. Its

purpose is to control the functionalities of the

computer, allowing it to perform various tasks. A

computer program is written by humans using a

programming language. A programming language is

the set of grammatical rules and vocabulary that

governs the correct writing of a computer program. In

practice, most of the existing programming languages

are written in English-speaking countries, and thus

they all use the English language to express their

syntax and vocabulary. However, many other

programming languages were written in non-English

languages, for instance, the Chinese BASIC, the

Chinese Python, the Russian Rapira, and the Arabic

Loughaty. This paper discusses the design and

implementation of a new programming language

called Phoenix. It is a General-Purpose, High-Level,

Imperative, Object-Oriented, and Compiled Arabic

programming language that uses the Arabic language

as syntax and vocabulary. The core of Phoenix is a

compiler system made up of six components they are

the Preprocessor, the scanner, the parser, the semantic

analyzer, the code generator, and the linker. The

experiments conducted have illustrated the several

powerful features of the Phoenix language, including

functions, while-loop, and arithmetic operations. More

advanced features are to be developed in future work,

including inheritance, polymorphism, file processing,

graphical user interface, and networking.

Keywords - Arabic Programming, Compiler Design,

Object-Oriented, Programming Languages.

I. INTRODUCTION

 When computers were first designed, they were all

hardwired, in that they were limited to perform

predefined functionalities without being able to be

controlled or manipulated by software. After several

decades, programmable computers were finally

invented [1]. In the early days of programmable

computers, programming was not done through

software as it is being done today; rather, it was done

by configuring a combination of plugs, wires, and

switches. For instance, to perform an addition

operation, a cable has to be manually connected from a

central hub to the adder unit [2]. As a result, controlling

and setting up new tasks were challenging and

time-consuming. As the years went by, a brilliant

scientist came up with a genius idea in the late 1940s;

he thought he could automate the programming tasks in

a computer by using encoded instructions stored in the

computer's memory and executed sequentially to

perform certain operations. John von Neumann called

his breakthrough “Stored-Program” [3]. The

stored-program concept means that instructions that

make up the software are stored electronically in binary

format in the computer's memory, rather than being

manually configured by humans using wires and knobs

from outside the computer. The idea was further

developed to incorporate both data and instructions in

the same memory, a model that is known as the Von

Neumann architecture [4].

Fundamentally, a computer program as we know it

today is a set of electronic instructions executed from

within the computer's memory by the computer's

central processing unit CPU. The purpose of a

computer program is to control the functionalities of

the computer, allowing it to perform miscellaneous

tasks, including mathematical computations, scientific

operations, accounting, data management, gaming, text

editing, audio, video, and image archiving, and the

Internet. A computer program is written by a human

using a programming language. A programming

language is the grammatical rules and vocabulary that

govern the correct writing and structure of a computer

program or code [5]. A trivial property of a

programming language is the human language it uses to

express its syntax and vocabulary. For instance, the

programming language C uses the English language to

write code. Another example is the Chinese BASIC,

which uses the Chinese language to write computer

programs.

This paper discusses the design and implementation

of a new programming language called Phoenix. It is a

General-Purpose, High-Level, Imperative,

Object-Oriented, and Compiled Arabic programming

language that uses the Arabic language to write

computer programs.

Youssef Bassil / IJCTT, 67(2), 1-6, 2019

8

II. EXISTING NON-ENGLISH

PROGRAMMING LANGUAGES

Non-English programming languages are

programming languages that do not use the English

vocabulary to write programming statements. Over the

past decades, several non-English programming

languages have been developed to appeal to the local

audience, especially students and non-English

speakers. For instance, ALGOL 68 was extended to

support several natural languages other than English,

such as Russian, German, French, and Japanese [6]. In

the early 1970s, Chinese programming languages were

introduced to make learning programming easier for

Chinese programmers. Some of these languages

include Chinese BASIC [7], Easy Programming

Language (EPL) [8], and ChinesePython [9]. In

French, there also exist a couple of programming

languages whose syntax is written in the French

language. Linotte [10], for instance, is an interpreted

high-level language targeted to French-speaking

children to learn to program in their native language

easily. Likewise, LSE (Language Symbolique

d'Enseignement) is a French programming language

similar to BASIC, exhibiting some advanced features

such as functions, conditional statements, and local

variables [11]. Furthermore, hundreds of programming

languages exist using international languages.

However, none of them has gone mainstream, such as

Hindi Programming, a programming language using

Hindi syntax [12], Mind [13], a Japanese programming

language, and Latino [14], a language based on

Spanish syntax and vocabulary, Rapira [15], a

Russian-based programming language mainly intended

for educational usage in schools, and Visual g [16], a

Portuguese-based programming language similar to

Pascal, designed for educational purposes.

Concerning Arabic-based programming languages,

several were presented. One of the earliest attempts to

develop an Arabic programming language was by Al

Alamiah company, a leading Kuwaiti company in

Arabic language technologies, which developed the

Arabic Sakhr Basic in 1987 [17]. Sakhr Basic is an

Arabized version of the BASIC language with

keywords and expressions written using the native

Arabic language. It targeted the Arabic version of

MSX home computers originally conceived by

Microsoft. ARLOGO [18] is another Arabic

programming language intended for educational

purposes and is based on the UCB Logo language.

ARLOGO is open-source and currently available only

for Microsoft Windows. ARABIAN [19] is yet another

Arabic programming language designed in 1995 and

planned for use in teaching programming for school

children in Arab countries. Al-Risalah [20] is an Arabic

object-oriented programming language providing the

basic mechanisms of object orientation, including

classes, objects, and composition. Al-Risalah was

influenced by Pascal, C++, and Eiffel languages and

intended to teach Arabic-speaking students how to

program and understand the concepts of

object-oriented programming. Lately, a couple of other

Arabic programming languages have been developed,

including AMORIA [21], Ebda3 [22], Jeem [23],

Loughaty [24], and Qlb [25], and Kalimat [26].

Unfortunately, all the aforementioned Arabic

programming languages are not fully comprehensive in

that some stayed on paper, others are not turning

complete, and others are not compiled. Furthermore,

some of these languages are not general-purpose and

lack many elementary programming features. Also,

others are console-based missing graphical user

interface features and event handling. Finally, last but

not least, the majority of those languages are

non-distributable in that they don't generate standalone

executable files for Windows or any other target

operating system.

III. PHOENIX – THE PROPOSED ARABIC

PROGRAMMING LANGUAGE

Phoenix is a General-Purpose, High-Level,

Imperative, Object-Oriented, Compiled, Arabic

computer programming language intended to write

computer programs in the Arabic language. Phoenix is

C# syntax-like language using modern programming

features to improve the programming experience in the

Arabic language. Phoenix is compiled in that it

generates an object/machine code from the source code

before program execution. In its current

implementation, Phoenix runs over Windows

operating system and can generate an executable file

from compiled machine code. Moreover, Phoenix is

powered by an easy-to-use and ergonomic IDE

(Integrated Development Environment) that allows

programmers to create, save, debug, and compile their

source code.

IV. THE LANGUAGE FEATURES

Phoenix supports many modern and powerful

programming features and disciplines, making it

suitable for software development. They can be

summarized as follows:

• Strong data types: Decimal and String

• Implicit type conversion between data types

• Dynamic arrays with automatic bound checking

• Global and Local variable declaration

• Conditional Structures (if and if-else)

• Control Structures (while)

• Code blocks and Compound statements

• Global, local, and function scopes

• Function declaration with parameters and return type

• Recursion

• Arithmetic calculation: + , - , * , / , % , ()

• String concatenation

• Logical evaluation using && and || operators

• Single line code comments

• Classes, objects, encapsulation

• Access modifiers public, private

• Composition

• Automatic Garbage Collection

• Graphical forms with input and output dialogs

Youssef Bassil / IJCTT, 67(2), 1-6, 2019

9

V. THE COMPILER

The Phoenix compiler consists of six building

blocks: Preprocessor, Scanner, Parser, Semantic

Analyzer, Code Generator, and Linker [27].

 The Preprocessor: Its purpose is to reduce the

complexity of the source code and make the job

easier on the scanner. The Preprocessor has many

tasks, including removing code comments,

eliminating extra white lines and white spaces,

integrating external libraries, and deleting unused

variables.

 The Scanner: Its purpose is to tokenize the source

code and divide it into meaningful tokens such as

keywords, operators, and data values. The scanner

algorithm is built upon Finite-State Machine (DFA)

[28] and Regular Expressions. The scanner also has

access to a Symbol Table implemented as a Linked

List data structure. Its purpose is to store variable

names and their data types, function names,

information about the scope, and compiler-generated

temporaries.

 The Parser: Its purpose is to detect syntax errors by

performing Syntax Checking against the tokens

generated by the scanner. The output is a Parse-Tree

known as Syntax-Tree. Syntax Checking is about

verifying that the arrangement of tokens as received

from the scanner is in the correct order and complies

with the programming language's grammar. The

parser algorithm is a Top-Down Parsing using

Recursive Descent Traversal with early error

detection.

 The Semantic Analyzer: Its purpose is to perform

Semantic Checking, which consists of verifying that

the written source code complies with the

programming language's semantics. Semantics are

the different rules that define restrictions on syntax.

For instance, one of the semantics restricts the use of

variables before being declared. Likewise, another

semantics restricts calling a function with the wrong

number of parameters.

 The Code Generator: Its purpose is to convert the

parse-tree generated by the parser into a target code.

The target code can be assembly code, Machine

code, Bytes code, or even another high-level

language. The current implementation of Phoenix

produces Machine code compatible with x86/x64

instruction set architecture.

 The Linker: Its purpose is to convert the target code

into a native executable code compatible with the

underlying operating system. The current

implementation of Phoenix generates ".exe"

standalone applications compatible with Microsoft

Windows.

A. The Scanner DFA

 The scanner algorithm is built based on

Deterministic Finite Automaton (DFA) and a set of

Regular Expressions. Figures 1, 2, and 3 are Finite

sample Automata that the scanner uses to detect and

tokenize identifier/variable names, numeric values, and

string values.

Fig. 1 Finite Automata for Identifiers

Fig. 2 Finite Automata for Numeric Values

Fig. 3 Finite Automata for String Values

The language Keywords are also detected by the

scanner. They are listed below:

كلوة ، وظيفة ، نهاية الىظيفة ، -رقن ، قائوة-رقن ، كلوة ، قائوة

صنف ، عام ، خاص ، إذا ، أها عدا ذلك ، كرّر ، أعرض ، أدخل ،

 إستدعاء ، عىدة

B. The Parser Context-Free Grammar

 The parser is built upon formal grammar. The

Phoenix parser is based on a CFG or Context-Free

Grammar [29] as it provides powerful features,

including but not limited to recursion, cascading, and

nesting. Below is the CFG of the Phoenix parser:
program  function-decl | declaration-stmp |

 declaration-class

function-decl  وظيفة : ID

 (return-type , parameter-list) {

 statement-list } نهاية الىظيفة

return-type  رقن-قائوة | كلوة | رقن كلوة-قائوة |

parameter-list  type ID

statement-list  statement-list statement | statement

statement  declaration-stmp

 | assignment-stmp

Youssef Bassil / IJCTT, 67(2), 1-6, 2019

10

 | comparison-stmp

 | repetition-stmp

 | outputDialog-stmp

 | inputDialog-stmp

declaration-class  صنف ID

 { access-mod declaration-stmp |

 access-mod function-decl }

access-mod  خاص | عام

declaration-stmp  var-declaration | object-declaration |

 array-declaration ;

var-declaration  type ID = value

array-declaration  type ID[NUM] = { value-list }

object-declaration  ID ID

value-list  NUM , value-list | NUM

value-list  STRING , value-list | STRING

type  كلوة | رقن رقن-قائوة | كلوة-قائوة |

assignment-stmp assignmentNum-stmp |

assignmentString-stmp;

assignmentNum-stmp  var = expression

var  ID | ID [expression]

expression  (expression) addop term | term

expression  (expression) mulop term | term

addop  + | -

mulop  × | ÷ | %

term  NUM | ID | ID [expression]

assignmentString-stmp  var = expressionString

var  ID | ID [expression]

expressionString  expressionString concatop term |

 term

concatop  &

term  STRING | $ | ID | ID [expression]

comparison-stmp  إذا : comp-expression statement

 أها عدا ذلك comp-expression statement : إذا |

 statement

comp-expression  expression relop expression |

 expressionString relop-str expressionString

relop  == | != | > | < | <=| >=

relop-str  == | !=

repetiton-stmp  كرّر : comp-expression statement

comp-expression  expression relop expression

relop  == | != | > | < | <=| >=

outputDialog-stmp  : أعرض expressionString ;

inputDialog-stmp  : أدخل var ، STRING

var  ID | ID [expression]

ID = letter (digit | letter)*

NUM = = ((+ | -) digit | digit) digit* . digit digit*

STRING = “ letter* “

letter = أ | ب | .. | ي

digit = 0 | .. | 9

VI. EXPERIMENTS & SAMPLE PROGRAM

 This section will write the first computer program

using the Phoenix Arabic programming language. It is

a sample code that computes the average of a set of five

grades or numbers while illustrating the use of function

calls, variables, while loop, arithmetic operations, and

display dialogs. Figure 4 shows the source code of the

sample program written using Phoenix, while Figure 5

shows its equivalent code written using C#. NET.

Finally, Figure 6 is a screenshot of the Integrated

Development Environment (IDE) used to write, edit,

and compile source code using the Phoenix

programming language.

Fig. 4 Source-Code has been written using Phoenix

Fig. 5 Equivalent Source-Code has been written using

C#

Fig. 6 IDE for Phoenix

VII. CONCLUSION

 This paper discussed the design of a new

programming language called Phoenix. It is a

General-Purpose, High-Level, Imperative,

Youssef Bassil / IJCTT, 67(2), 1-6, 2019

11

Object-Oriented, Compiled, and Arabic computer

programming language. Phoenix is C# syntax-like and

is supported by an Integrated Development

Environment. The core of Phoenix is a compiler system

made up of six building blocks, including a

Preprocessor, a scanner based on DFAs and regular

expressions, a parser based on context-free grammar, a

semantic analyzer, and a code generator, and a linker.

The experiments showed a sample program written

using Phoenix and its equivalent code written using C#.

The results have demonstrated the several powerful

features of Phoenix, including functions, while-loop,

and arithmetic operations and its capability in building

general-purpose programs that can be used for

real-world applications.

VIII. FUTURE WORK

 More advanced object-oriented features are to be

investigated in future work, such as inheritance,

polymorphism, and templates. Moreover, a library of

built-in classes and reusable functions is to be

developed to provide such capabilities as file

processing, database access, graphical user interface,

and networking.

ACKNOWLEDGMENT

 This research was funded by the Lebanese

Association for Computational Sciences (LACSC),

Beirut, Lebanon, under the “Arabic Programming

Language Research Project – APLRP2019”.

REFERENCES

[1] Georges Ifrah, "The Universal History of Computing: From the

Abacus to the Quantum Computer," New York: John Wiley &

Sons, ISBN 9780471396710, 2001

[2] Arthur Burks, "Electronic Computing Circuits of the ENIAC,"

Proceedings of the IRE, vol. 35, no. 8, pp. 756–767, 1947

[3] Campbell-Kelly, Martin, "The Development of Computer

Programming in Britain (1945 to 1955)", IEEE Annals of the

History of Computing, vol. 4, no. 2, pp. 121–139, 1982

[4] John L. Hennessy, David A. Patterson, David Goldberg,

"Computer architecture: a quantitative approach," Morgan

Kaufmann, ISBN 9781558607248, 2003

[5] Brian W. Kernighan, Dennis M. Ritchie, "The C Programming

Language," Prentice-Hall software series, ISBN13

9780131101630, 1978

[6] GOST 27975-88 Programming language ALGOL 68 extended,

GOST, 1988. Retrieved November 15, 2008.

[7] Chinese BASIC Manual, http://www.cbflabs.com/academy

/story/04.htm, Retrieved April 6, 2016

[8] EPL homepage, http://epl.eyuyan.com/, Retrieved Dec 14,

2018.

[9] ChinesePython homepage, http://www.chinesepython.org,

Retrieved Dec 14, 2018.

[10] Linotte homepage, http://langagelinotte.free.fr/wordpress,

Retrieved Dec 14, 2018.

[11] LSE (Language Symbolique d'Enseignement) implementation,

http://nasium-lse.ogamita.com/, Retrieved Dec 14, 2018.

[12] Hindi programming language, SKT network,

http://www.sktnetwork.com/portfolio/hindi-programming-lang

uage, Retrieved February 15, 2017.

[13] Mind, http://www.scripts-lab.co.jp/mind/whatsmind.html,

Retrieved Dec 14, 2018.

[14] Latino GitHub, https://github.com/primitivorm/latino,

Retrieved Dec 14, 2018.

[15] Description of Rapira, http://ershov-arc.iis.nsk.su/archive/

eaindex.asp?did=7653, Retrieved Dec 14, 2018.

[16] Visual, http://www.apoioinformatica.inf.br/produtos/visualg,

Retrieved Dec 14, 2018.

[17] Arabic Sakhr Basic (1987, MSX, Al Alamiah)

[18] ARLOGO project homepage, http://arlogo.sourceforge.net/,

Retrieved February 15, 2017.

[19] Mansoor Al-A'Ali, Mohammed Hamid, "Design of an Arabic

programming language (ARABLAN)," Journal Computer

Languages, Volume 21, Issue 3-4, pp. 191-201, October 1995.

[20] Essam Mohammad Arif, "Design of an Arabic object-oriented

programming language and a help system for pedagogical

purposes," Doctoral Dissertation, Illinois Institute of

Technology Chicago, IL, USA, 1995

[21] AMORIA homepage, http://ammoria.sourceforge.net/,

Retrieved Dec 14, 2018.

[22] Ebda3 homepage, http://ebda3lang.blogspot.com/, Retrieved

Dec 14, 2018.

[23] Jeem homepage, http://www.jeemlang.com/, Retrieved Dec 14,

2018.

[24] Youssef Bassil, Aziz Barbar, "Loughaty/MyProLang – My

Programming Language - A Template-Driven Automatic

Natural Programming Language," Proceedings of the World

Congress on Engineering and Computer Science, WCECS

2008, San Francisco, USA.

[25] Qlb GitHub, https://github.com/nasser/---, Retrieved Dec 14,

2018.

[26] Kalimat GitHub, https://github.com/lordadamson/kalimat,

Retrieved February 15, 2017.

[27] Kenneth C. Louden, "Compiler Construction: Principles and

Practice," PWS Publishing Company, 1997, ISBN 0534939724

[28] Hopcroft, John E., Motwani, Rajeev, Ullman, Jeffrey D.,

"Introduction to Automata Theory, Languages, and

Computation (2 ed.)", Addison Wesley, 2001, ISBN

0201441241.

[29] Chomsky, Noam, "Three models for the description of

language," Information Theory, IEEE Transactions, vol. 2, no.

3, pp. 113–124, 1956

